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Abstract
Much recent research effort has been devoted to explain the success of deep learning. Random
Matrix Theory (RMT) provides an emerging way to this end by analyzing the spectra of large
random matrices involved in a trained deep neural network (DNN) such as weight matrices or
Hessian matrices in the stochastic gradient descent algorithm. To better understand spectra of
weight matrices, we conduct extensive experiments on weight matrices under different settings
for layers, networks and data sets. Based on the previous work of Martin and Mahoney (2021b),
spectra of weight matrices at the terminal stage of training are classified into three main types:
Light Tail (LT), Bulk Transition period (BT) and Heavy Tail (HT). These different types, especially
HT, implicitly indicate some regularization in the DNNs. In this paper, inspired from Martin and
Mahoney (2021b), we identify the difficulty of the classification problem as an important factor
for the appearance of HT in weight matrices spectra. Higher the classification difficulty, higher the
chance for HT to appear. Moreover, the classification difficulty can be affected either by the signal-
to-noise ratio of the dataset, or by the complexity of the classification problem (complex features,
large number of classes) as well. Leveraging on this finding, we further propose a spectral criterion
to detect the appearance of HT and use it to early stop the training process without testing data.
Such early stopped DNNs have the merit of avoiding overfitting and unnecessary extra training
while preserving a much comparable generalization ability. These findings from the paper are
validated in several NNs (LeNet, MiniAlexNet and VGG), using Gaussian synthetic data and real
data sets (MNIST and CIFAR10).
Keywords: Deep Learning, Weight matrices, Heavy tailed spectrum, Early stopping

1. Introduction

In the past decade, deep learning (LeCun et al., 2015) has achieved impressive success in nu-
merous areas. Much research effort has since been concentrated on providing a rational explanation
of the success. The task is difficult, particularly because the training of most successful deep neural
networks (DNNs) relies on a collection of expert choices that determine the final structure of the
DNNs. These expert choices include nonlinear activation, hidden layer architecture, loss function,
back propagation algorithm and canonical datasets. Unfortunately, these empirical choices usually
bring non-linearity into the model, and non-convexity of optimization into the training process. As
a matter of consequence, practitioners of deep learning are facing certain lack of general guide-
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lines about the “right choices” to design and train an effective DNN for their own machine learning
problem.

To make progress on the understanding of existing trained and successful DNNs, it is impor-
tant to explore their properties in some principled way. To this end, a popular way has recently
emerged in the literature, namely spectral analysis of various large characteristic random matrices
of the DNNs, such as the Hessian matrices of the back-propagation algorithm, weight matrices be-
tween different layers, and covariance matrices of output features. Actually, such spectral analysis
helps to gain insights into the behavior of DNNs, and many researchers believe that these spectral
properties, once better understood, will provide clues to improvements in deep learning training
(Dauphin et al., 2014; Papyan, 2019b,a; Sagun et al., 2017; Yao et al., 2020; Granziol, 2020; Pen-
nington and Worah, 2019; Ge et al., 2021). Recently, Martin and Mahoney (2021b) studied the
empirical spectra distributions (ESD) of weight matrices in different neural networks, and observed
a “Phase Transition 5+1” phenomenon in these ESDs. Interestingly, the phenomenon highlights
signatures of traditionally regularized statistical models even though there is no set-up of any tradi-
tional regularization in the DNNs. Here, traditional regularization refers to the minimization of an
explicitly defined and penalized loss function of the form L(θ) + α · p(θ) with some tuning param-
eter α (θ denotes all the parameters in the DNN). However, those well-known expert choices such
as early stopping also produces a regularization effect in DNNs, and this is the reason why such ex-
pert choices are recommended for practitioners. Actually, Kukacka et al. (2017) presented about 50
different regularization techniques which may improve DNN’s generalization. Among them, batch
normalization, early stopping, dropout, and weight decay are a few commonly used ones.

A main finding from Martin and Mahoney (2021b) is that the effects of these regularization
practices can be identified through the spectra of different weight matrices of a DNN. Moreover, the
forms of these spectra in the “5+1 phase transition” help assess certain degree of regularization in the
DNN. For instance, if these spectra are far away from the Marčenko-Pastur (MP) law, or the largest
eigenvalue departs from the Tracy-Widom (TW) Law (see Appendix A), there is strong evidence
for the onset of more regular structures in the weight matrices. A connection between implicit
regularization in a DNN and the forms of the spectra of its weight matrices is thus established.
Particularly, they considered the evolution of weight matrices spectra during the training process of
a DNN from its start to its final stage (usually 200-400 epochs), and pointed out that in late stage of
the training, the deviation of the spectra from the MP Law (namely the emergence of Heavy Tail)
indicates certain regularization of the DNN, synonym of an improved genelization ability. Indeed,
such regularization implies high-correlated entries in the weight matrices and thus leads to a heavy
tailed spectrum. Recently, Gurbuzbalaban et al. (2021) pointed out that for linear regressions the
SGD can also produce heavy tails in weight matrix spectra. Hodgkinson and Mahoney (2021) on
the other hand explored the impact of other factors on the emergence of heavy tails which relate to
the optimization process such as increasing the step size/decreasing the batch size, or increasing L2

regularization.
In Martin et al. (2021), the authors found that the “Heavy Tail based metrics can do much

better—quantitatively better at discriminating among series of well-trained models with a given
architecture; and qualitatively better at discriminating well-trained versus poorly trained models.”
Experiments conducted in this research confirm the importance of such heavy tail phenomenon for
the understanding of deep learning.

Specifically, we identify a precise factor, that we term as classification difficulty, which strongly
controls the appearance or not of heavy tails in weight matrix spectra at the final stage of the training.
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The greater classification difficulty, the higher possibility that heavy tails appear. Moreover, we
showcase two situations of difficult classification that lead to heavy tails. In one situation, the data
quality is poor (or its signal-to-noise ration is low) and the emergence of heavy tails indicates an
attempt for DNNs to extract more features and increase testing accuracy. The other situation is more
related to a higher complexity of the classification problems such as in modern data sets with a large
number of features and classes, and the emergence of heavy tails here indicates an attempt for DNNs
to identify relevant data features. While both situations have a high classification difficulty and lead
to heavy tails in weight matrix spectra, the training results could be entirely different. In the second
situation, the emergence of HT indicates a continuous and healthy feature extraction process that
gradually improves the test accuracy of the DNN. However, in the first situation, the emergence of
heavy tails indicates some excessive information extraction and thus leads to overfitting.

Note that as a factor controlling the heavy tail phenomenon, the classification difficulty differs
from the other factors identified in the SGD or the hyper-parameters involved in the optimization
process as discussed in Gurbuzbalaban et al. (2021) and Hodgkinson and Mahoney (2021). Intu-
itively, the classification difficulty is a statistical metric for how difficult classes in a data set can be
identified under certain model architectures. Nevertheless the classification difficulty is still a vague
concept and may depend on many properties of the data set and model architectures. In this paper,
we focus our discussion on two factors that directly impact on the classification difficulty, namely
the data quality and the complexity of the classification problem.

As an important application of our observations on the spectrum types and on the emergence
of heavy tails, we propose a spectral criterion to guide the early stopping in practice. Without
prior information, heavy tails indicate some regularization at play or some problematic issues such
as overfitting in the training process. Roughly speaking, we early stop the training when there is
statistically significant evidence that heavy tails appear in weight matrix spectra. Such early stopped
DNNs have the merit of avoiding overfitting and unnecessary extra training while preserving a
much comparable generalization ability. These findings from the paper are validated in several NNs
(LeNet, MiniAlexNet and VGG), using Gaussian synthetic data and real data sets (MNIST and
CIFAR10). Note that the idea of using evolution of weight matrices to monitor the training process
of a DNN has appeared earlier in the AI community with the online WeightWatcher package1.
However to our best knowledge, our spectral criterion is the first quantitative criterion based on the
weight matrix spectra to guide early stopping of a training process.

We summarize our contributions as follows:

1. The difficulty of a classification problem is identified as a driving factor for the appearance
of heavy tails in weight matrices spectra. Experiments conducted on both synthetic and real
data sets support this finding. Particularly, decreasing the SNR of the data set or increasing
the number of classes K in Gaussian data experiments all increase the classification difficulty
and generate heavy tails at the end of training. In real data experiments, heavy tails appear
more in experiments with CIFAR10 than with MNIST due to more complex features and a
higher classification difficulty in CIFAR10.

2. We reformulate the “5+1” classification of Martin and Mahoney (2021b) into a smaller clas-
sification of the bulks of weight matrix spectra at final training stage: Light Tail (LT), Bulk
Transition period (BT) and Heavy Tail (HT). With a decreasing classification difficulty, these

1. [https://github.com/CalculatedContent/WeightWatcher], a companion package to Martin and Mahoney (2021b).
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spectrum bulks obey a phase transition from HT to BT, and then to LT. This simpler classi-
fication of spectra types help demonstrate the phase transition phenomenon from HT to BT,
and then to LT, a phenomenon widely observed previously and also in our experiments. Our
finding of the classification difficulty as the main driving factor of this phase transition is also
based on this simpler classification.

3. Leveraging on these findings, we propose a spectral criterion to guide the early stopping
without access of testing data. The HT(BT)-based spectral criterion could not only cut off
a large training time with just a little drop of test accuracy, but also avoid over-fitting even
when the training accuracy is increasing.

The remaining of the paper is organized as follows. Sections 2 and 3 report our experimental
results on synthetic data and real data sets, respectively. The spectral criterion for early stopping
is introduced in Section 4. Related theoretical developments are put in Appendices A and B of the
supplementary materials, and additional algorithms and experimental results in Appendices C and
D.

2. Experiments with Gaussian Data

In order to develop our findings clearly, in this section, we adopt a widely used Gaussian input
model (Lee et al., 2018). By examining this well-defined Gaussian model for classification, we
establish the evidence for a classification difficulty driving regularization via the confirmation of a
transition phenomenon in the spectra of network’s weight matrices in the order of HT→ BT→ LT.
Moreover, the transition is quantitatively controlled by (i) the SNR of the Gaussian model, and (ii)
the number of classes K in the model2.

Empirically Results: Signal-to-noise ratio (SNR) is a common indicator to measure data quality
and greatly impacts the classification difficulty in a Gaussian model. We empirically examine the
spectra by changing the SNR and the number of classes K in different architectures:

1. Different NN structures: wider but shallower, or narrower but deeper. These structures are
similar to the various well known NNs’ fully connected denser layers, such as LeNet and
MiniAlexNet;

2. Different layers in neural networks: all weight matrices in different layers have spectrum
transition driven by the SNR and the number of classes K;

3. Different class numbers in input data: the spectrum transition is always observed in different
class numbers, and HT is more likely to emerge when increasing the number of classes K.

Table 1 gives a short summary of the findings when changing the SNR.
We empirically observe the spectrum transition in all settings. The transition is fully driven by

the classification difficulty. Therefore, in this Gaussian model, the indicated implicit regularization
in the trained DNN is data-effective, directly determined by the difficulty. Precisely, under low
level SNR or high class numbers, the weight matrices of a DNN deviate far away from the common
MP model. Instead, they are connected to very different random matrix models. The decrease of
classification difficulty drives the weight matrices from Heavy Tailed model into MP models at the
final training epoch.

2. Codes are given in https://github.com/juve-xx/watchtheweight
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Table 1: Summary of spectrum transition in a controlled Gaussian model with K classes and
various SNRs.

SNR
Type of spectra Number of spikes

Weak Heavy Tail K − 1 or K

Middle
Heavy Tail
↓

Bulk Transition period
K − 1 or K

Strong Light Tail (MP Law) K − 1 or K

2.1 Gaussian Data Sets

For the multi-classification task, Gaussian model is a commonly used model for assessing theo-
retical properties of a learning system (Lee et al., 2018). In this model with K classes, data from a
class k ∈ {1, . . . ,K} are p-dimensional vector of the form

hi,k = µk + εi,k, 1 ≤ i ≤ nk, (2.1)

where µk ∈ Rp is the class mean, εi,k
iid∼ N (0, σ2Ip) are Gaussian noise, nk is the total number of

observation from class k. (This Gaussian data model is referred to as the K-way ANOVA model in
the statistics literature.) The signal-to-noise ratio (SNR) for this K-class Gaussian model is defined
as

SNR = Ave
{k,k′}

||µk − µk′ ||
σ

. (2.2)

Here || · || denotes the Euclidean norm in Rp, and the average is taken over the
(
K
2

)
pairs of classes.

We aim at examining the impact of the classification difficulty on the weight matrix spectra in a
trained NN for such Gaussian data. We thus consider two settings for the class means {µk} which
lead to different families of SNRs. In all the remaining discussions, we will take σ = 1.

DATASET D1(δ): CLASS MEANS WITH RANDOMLY SHUFFLED LOCATIONS

Consider a base mean vector u = (m, . . . ,m,m+ δ, . . . ,m+ δ)T ∈ Rp where half of the compo-
nents are m, and the other half, m + δ. For the class means µk, we reshuffle the locations of these
components randomly (and independently). Formally, for each class k, we pick a random subset
Ik ⊂ {1, ..., p}, of size p/2, and define the mean for this class as

µk = m1Ik + (m+ δ)1Ick . (2.3)

Here for a subset A ⊂ {1, ..., p}, 1A is the indicator vector of A with coordinates 1A(i) = 1{i∈A}
(1 ≤ i ≤ p).

This setting with randomized locations is motivated by an essential empirical finding from ex-
ploring a few classical trained DNNs such as MiniAlexNet and LeNet. Indeed, we found that in
these DNNs, the global histograms of the features from all the neurons are pretty similar, with very
comparable means and variances, for various NNs; the differences across the NNs are that high and
low values of the features appear in different neurons (locations). The randomly shuffled means
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used in our experiments are designed to imitate these working mechanisms observed in real-world
NNs.

It follows that for the difference µk − µk′ = (zj), 1 ≤ j ≤ p from two classes k ̸= k′, its
coordinates zj take on the values −δ, 0 and δ with probability 1

4 , 1
2 and 1

4 , respectively. Clearly, the
model SNR will depend on the tuning parameter δ. By Hoeffding inequality, we first conclude that

P

(∣∣∣∣ ||µk − µk′ ||2

p
− δ2

2

∣∣∣∣ ≤ ϵδ2
)
≥ 1− exp (−2ϵ2p),

or equivalently,

P

(
δ√
2

√
1− 2ϵ ≤ ||µk − µk′ ||√

p
≤ δ√

2

√
1 + 2ϵ

)
≥ 1− exp (−2ϵ2p)

Note that
√
1 + x ≤ 1 + x,

√
1− x ≥ 1 − x when 0 < x < 1. By taking ϵ =

√
log p/p, we

conclude that with probability at least 1− 1/p2,∣∣∣∣||µk − µk′ || − δ

√
p

2

∣∣∣∣ ≤ δ
√

2 log p.

Therefore at a first-order approximation, the SNR (2.2) in this Gaussian model is (with σ = 1),

SNR = Ave
{k,k′}

||µk − µk′ ||
σ

∼ δ

√
p

2
. (2.4)

DATASET D2(t): CLASS MEANS OF ETF TYPE

Consider the family of vectors {vk}1≤k≤K where vk is defined by

vk = 1{i=k} −
1

K
1{1≤i≤K}, 1 ≤ i ≤ p.

So vk has support on {1, . . . ,K} and ||vk|| =
√
(K − 1)/K. The normalized family {vk/||vk||}

is called a K-standard ETF structure (Papyan et al., 2020).
We define the k-th class mean as µk = tvk, and use the scale parameter t > 0 to tune the SNR

of the model. It is easy to see that ||µk − µk′ || =
√
2t so that the model SNR is

SNR = Ave
{k,k′}

||µk − µk′ ||
σ

= ||µk − µk′ || =
√
2t. (2.5)

(Papyan et al., 2020) has shown that the ETF structure is an optimal position for the final training
outputs. Many experiments on real data sets lead to ETF structure for final engineered features.
From a layer-peered perspective as mentioned in (Ji et al., 2021), each layer in NN can be regarded
as an essential part of feature engineering, and the feature is extracted layer by layer. The ETF
structure model considers that the first Dense layer behind the convolution layer is already close to
the end of feature extraction.

In our experiments, we take m = −0.2 (and σ = 1). The size of each class k is nk = 7500
in the training dataset, and nk = 800 in test dataset. The number of classes K takes on the values
{2, 5, 8} on all datasets. Table 2 gives the ranges of the model SNR observed in different dataset/NN
combinations with the chosen values of tuning parameters δ and t.
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Table 2: Range of SNRs observed in various datasets/ networks combinations.
D1(δ) D2(t)

δ SNR interval t SNR interval
NN1 0.01 [0.01, 1.19] 0.08 [0.08, 4.80]

0.05 [1.20, 2.00]
NN2 0.005 [0.005, 0.4] 0.08 [0.08, 4.80]

2.1.1 STRUCTURE OF NEURAL NETWORKS

We consider two different neural networks, a narrower but deeper NN1, and a wider but shal-
lower NN2. The number of layers and their dimensions are shown in Figure 1:

NN1: 100→ 1024→ 512→ 384→ 192→ K,
NN2: 2048→ 1024→ 512→ K.

The activation function is ReLU(x) = max(x, 0). We do not apply any activation function on the
last layer.

(a) NN1 (b) NN2

Figure 1: The two NNs considered which imitate the dense layer in well-known NNs such as
MiniAlexNet, VGG and LeNet.

2.1.2 OPTIMIZATION METHODOLOGY

Following common practice, we minimize the cross-entropy loss using stochastic gradient de-
scend with momentum 0.9. All the datasets are trained with batch size =64 on a single GPU, for
248 epochs. Trained NNs are saved for the first 10, and then every four epochs. The total number
of saved NNs is (136 + 60 + 80 + 60) × 3 × 70 = 70560. The initialization is Pytorch’s default
initialization, which follows a uniform distribution. The learning rate is 0.01.
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2.2 Results on synthetic data experiments

To investigate the influence of the data SNR on the whole training process, we first report syn-
thetic data experiments results.

2.2.1 THREE TYPES OF SPECTRUM BULK

We use SNR to measure the data quality and focus on the non-zero eigenvalues of the matrix
WW T . Clearly the SNR can directly impact on the classification difficulty. The weight matrices
W we consider in this section are those at the final epoch (248th). In the Gaussian data sets, with
different values of SNR, we have observed the following three typical types for the bulk spectrum
of the weight matrices:

HT : Heavy Tail

BT : Bulk Transition

LT : Light Tail (MP Law)

We gradually increase the SNR of the Gaussian model and report in Figures 2-4 examples of
spectra of weight matrices at the end of training. The SNR is increasing from Figure 2 to Figure 4
and within each figure, from plot (a) to plot (d). In Figure 2 the SNR is relatively low, the weight
matrix spectra (in blue) show significant departure from the reference MP spectrum (in red). These
spectra are defined as of heavy tail type (class HT). In contrast, spectra in Figure 4 with relatively
high SNR, closely match the reference MP spectrum, and this corresponds to the light tail class LT.
More complex structures appear in the intermediate Figure 3 which correspond to medium values
of the SNR. A transition is taking place from Figure 3(a), which is still close to a HT spectrum, to
Figure 3(d), which is now close to a MP spectrum. Spectra as those shown in Figue 3 are referred
as the bulk transition class BT.

In addition to the bulk transition above, the spike eigenvalues (outliers) also have a characteristic
movement. Papyan (2020) reported that in general the total K = 8 spikes are grouped in two
clusters with K−1 = 7 spikes (determined by the between-class covariance matrix) and a singleton
(determined by the general mean), respectively. We now describe the evolution of the group and
the singleton with gradually increased SNR and the full transition HT→BT→LT between the bulk
classes. At the very beginning (Figure 2(a)), all the spikes are hidden in the bulk. When the SNR
increases, the group of 7 spikes emerge from the bulk and stay outside the spectrum forever. The
movement of the singleton spike is more complex, hiding in and leaving the bulk repeatedly. There
are particular moments where the group and the singleton meet and stay close each other: we then
see a group of 8 spikes.

We use “XX(m,n)” to describe the whole empirical spectral distribution (ESD) of weight ma-
trices including both the bulk and spikes. Here “XX” means one of the three bulk types in {HT,
BT, LT}. The number “m” or “n” gives us position information of the two groups of the spikes,
numbered in increasing order of their values. For instance, BT(1,7) displayed in Figure 3(d), means
the bulk type is BT, the singleton spike lays between the bulk and the group of 7 spikes; HT(0,8)
means the group of 7 spikes and the singleton are mixed; HT(0,7) means we see only the group of
7 spikes.

Remark 1 The spectrum transition from HT to BT and LT can also be assessed by more quantitative
criteria. (i) The transition from HT to BT is related to the position of the group of K − 1 spikes, the
singleton spike and the bulk edge. When the group of K − 1 spikes is large enough, the HT type
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ends and the BT phase starts. Note that here the bulk type is heavy-tailed in both regimes HT and
BT. (ii) The transition from BT to LT can be directly detected by comparing the bulk spectrum to
the reference MP spectrum. Precisely, this can be achieved using our spectral distance statistic ŝn
introduced in Section 4.
Remark 2 Regarding the special case of the MP spectrum with unit aspect ratio, the density is
unbounded at the origin. However, the right edge is regular and the spectrum is still classified as a
LT type.

(a) HT(0,0) (b) HT(0,1) (c) HT(7,1) (d) HT(0,8)

Figure 2: Examples of observed HT type spectrum bulks. From plot (a) to (d) the SNR increases.
The experiments are conducted from Synthetic data and the pictures are examples for the
specific classification.

(a) BT(1,7) (b) BT(0,7) (c) BT(0,7) (d) BT(1,7)

Figure 3: Examples of observed Bulk Transition (BT) type spectrum bulks. From plot (a) to (d)
the SNR increases from the first and second column to the third and last. The experiments
are conducted from Synthetic data and the pictures are examples for the specific classifi-
cation.
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(a) LT(1,7) (b) LT(0,8) (c) LT(0,7)

Figure 4: Examples of observed LT type spectrum bulks. From plot (a) to (c) the SNR increases
from LT(1,7) to LT(0,8) and LT(0,7). The experiments are conducted from Synthetic data
and the pictures are examples for the specific classification.

Rank Collapse: One special case, Rank Collapse, occasionally emerges in our experiments espe-
cially when SNR is low. This is the phenomenon that some spike eigenvalue is huge, making the
bulk in the picture ’needle like’ as shown in Figure 5. When the classification difficulty decreases
(SNR increases), Rank Collapse gradually disappears.

Figure 5: Example of spectrum with Rank Collapse. The figure here is an example to display the
rank collapse.

In Martin and Mahoney (2021b), the 5+1 phases of training correspond to the 5 phases of Ran-
dom Matrix Theory that arise when considering both Gaussian as well as Heavy Tailed (HT) random
matrices, and which include 3 different HT phases. In this work, they propose to identify which of
the 3 HT phases an HT layer is by fitting the spectral density to a power law, and considering fitted
the PL exponent alpha; the value of alpha determines the universality class. Using this classifica-
tion, they have discovered that most very well trained DNNs have layer that live in what they refer
to as the Fat Tailed, or Moderately Heavy Tailed (MHT), Universality class (with layer Power Law
exponents α between 2 and 6).
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Here, we reformulate their approach, and propose a smaller classification, that includes only 1,
not 3, HT phases3. Our single HT phase is not identified with any particular HT Universality class
of RMT, nor do we attempt to identify or fit the specific HT distribution (i.e Power Law, Truncated
Power Law, etc). Instead, we propose a quantitative but non-parametric spectral criteria to identify
the appearance of our HT phase. And we note that, using this spectral criteria, the onset of our HT
phase corresponds to a good stopping criteria, indicating when a model is well trained4.

2.2.2 PHASE TRANSITION

We now provide detailed evidence that the spectrum bulks of weight matrices undergo a phase
transition controlled by the data SNR. As mentoned earlier, the phase transition operates in the
direction of

HT→ BT→ LT

when the SNR increases. The complete experimental results, with recorded phase transition pe-
riods (in terms of intervals of SNR values) in all NN layers, are given in Tables 3-4, for the four
NN/dataset combinations respectively. These tables are summarized in Figure 6 as a graphical sum-
mary.

The main findings from these results are as follows:

1. For all the four NN/dataset combinations, all the three tested class numbers K and in all
layers, the ESDs always observe the same phase transition direction: HT→BT→LT.

When the data SNR is high enough, all spectrum bulks in weight matrices fall into the LT
type. It is also noted that some weight matrices start from BT type and LT type meaning that
the SNR has never been too low. The bulk transition (BT) period kicks off when the group of
K − 1 spikes separate from the bulk.

In our experiments, these transitions from HT to LT are fully generated by and only responsi-
ble to the single tuning parameter, namely the data SNR, or the difficulty of the classification
problem. There is thus evidence of a strong impact of the classification difficulty on the
weight matrices spectra.

2. For a given layer in the neural network at a same SNR level, HT has higher probability to
emerge as the number of classes K increases: the more classes the data set has, the higher
difficulty to classify them correctly. The phenomenon that HT emerges with an increased
number of classes K thus gives another evidence of strong impact of the classification diffi-
culty on weight matrices spectra.

3. One interesting phenomenon is that when one travels from the initial layer to deeper layers
(FC2→FC4 in NN1, FC1→FC2 in NN2), the layers become narrower and the tails of spec-
trum bulks become lighter. This is true for both NNs and all SNR levels. In line with the
previous work in Hodgkinson and Mahoney (2021), the statement that the wider layers will
exacerbate HT is validated in our experiments. Practioners are thus suggested to design wider
layers for learning process monitoring.

3. We are grateful to a referee who extensively helped us clarify the relationship between our classification and the 5+1
taxonomy of Martin and Mahoney (2021b).

4. It is noted that our spectral criterion resembles the non-parametric weightwatcher rand distance metric, proposed in
Yang et al. (2022), available in the open-source weightwatcher package. (https://weightwatcher.ai)
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(a) NN1+D1 (b) NN1+D2

(c) NN2+D1 (d) NN2+D2

Figure 6: Transition Period with the four NN/dataset combinations. The x-axis is the tuning
parameter (TP) to tune the SNR level with the range given in Table 2. Each block of three
lines in a given layer corresponds to the cases K = 8 (Topline), K = 5 (Middle line) and
K = 2 (Bottom line). Different colors represent different spectrum types in {HT, BT,
LT}.
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2.2.3 ADDITIONAL EXPERIMENTS ON DIFFERENT BATCH SIZES

Batch size also has great impact on the training stability together with data features. (Keskar
et al., 2016; Goyal et al., 2017) observe that different batch sizes may give different influence on the
training dynamics. To give more comprehensive evidence of the impact of classification difficulty
on weight matrices spectra, we now conduct experiments on NN1+D1 and NN2+D2 with K = 8,
and two additional batch sizes 256, 32 (previous experiments all used a batch size of 64). The other
settings are identical as in the previous experiments with varying SNRs.

(a) NN1+D1 (b) NN1+D2

Figure 7: Transition Period in different batch sizes. The gray part in NN1+D1 at FC3 represents
Rank Collapse.

The results are fully reported in Table 5 while a graphic sketch in given in Figure 7. In each
row on the figure and from left to right, the SNR is increasing, that is the classification difficulty is
decreasing, it is amazing to see that the same phase transition of the bulk spectrum still takes place
here and in the same direction as previously (HT→BT→LT), for all batch sizes.

It is also interesting to look at the figure vertically, from bottom to top, the batch size is increas-
ing from 32 to 256. We observe again the transition in the direction HT→BT→LT. Actually, this
phenomenon of observing more likely HT with smaller batch sizes has already been reported in
Martin and Mahoney (2021b), so confirmed by our new experiments.

3. Experiments with Real Data

The previous results are based on synthetic Gaussian data. Here we conduct experiments with
real data sets to show the impact of classification complexity/difficulty on weight matrices spectra.
The DNNs chosen for these experiments are LeNet, MiniAlexNet and VGG11 (LeCun et al., 1998;
Krizhevsky et al., 2012; Simonyan and Zisserman, 2014), which are the most classic and represen-
tative DNNs in pattern recognition. We consider two data sets, the MNIST and CIFAR10. Note
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IMPACT OF CLASSIFICATION DIFFICULTY ON THE WEIGHT MATRICES SPECTRA IN DEEP LEARNING

that in Martin and Mahoney’s work, the data sets such as CIFAR10, CIFAR100 and Image1000 all
cause HT type spectra due to complex features unlike the MNIST data set. In our experiments, we
select MiniAlexNet instead of the more extensive AlexNet to reduce computing complexity.

3.1 Experimental Design

The structures of LeNet and MiniAlexNet are shown in Figure 8, and for VGG we refer the
reader to Simonyan and Zisserman (2014). The data sets we use are MNIST and CIFAR10. We
tune batch sizes to have different practical architectures, then check spectra type in the trainined
NNS with these architectures. As before, we save trained models for the first 10 epochs and every
four epochs afterward. The optimization methodology is the same as previously introduced Section
2.1.2.

We concentrate the discussion on the first fully connected layer just next to convolution layers
in each NN. The weight matrix has the structure 2450× 500 in LeNet, 4096× 384 in MiniAlexNet
and 2048× 500 in VGG.

Figure 8: The structure of LeNet (top) and MiniAlexNet (Bottom). The input data sets are MNIST
with size 1× 28× 28 or CIFAR10 with size 3× 28× 28, the fully connected layers we
consider lay behind convolutional layers.

3.2 Results

For the MNIST data, Figures 9 reports all the ESDs obtained at the fully connected layer and at
the final epoch 248 with various batch sizes within the three NNs. The corresponding results for the
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CIFAR10 data are reported in Figures 10. The determination of the spectrum type is done using the
method introduced in Section 2.2.1. Comparing the results for a given NN, we see that the spectrum
type from the two data sets are consistently different. Specifically,

1. In LeNet+MNIST, the spectra are of BT type except for the batch size 256 with LT type, these
BT type spectra are though very close to the MP Law. In LeNet+CIFAR10, the spectra are
also of BT type but much closer to the HT type except for the batch size 16;

2. In MiniAlexNet+MNIST, the spectra are of LT type except the batch sizes 16 and 32 with BT
type. In MiniAlexNet+CIFAR10, the spectra are of HT type or BT type, all very different
from the MP Law;

3. In VGG+MNIST, the spectra are all of LT type; In VGG+CIFAR10, the spectra transit from
BT (visibly similar to HT) to LT with increasing batch sizes.

In summary, these experiments show that the spectrum type of the weight matrix depends much
more on the data set itself than the NN architecture.

In order to further understand the difference between the two data sets and their impact on
the spectrum type of the weight matrices, we evaluate the detection rates on the test data of the
trained NNs with the three architectures, see Table 6. The detection rates on MNIST are 99% in
all networks, while those on CIFAR10 are 64% with LeNet, 76% with MiniAlexNet and 81% with
VGG11, respectively. The differences in testing accuracy give evidence that CIFAR10 has much
more complex features than MNIST, and the classification problem is more difficult for CIFAR10
than for MNIST. As the experiments show that training on CIFAR10 is more likely to cause HT
spectra, we thus have a novel confirmation that the classification difficulty or complexity has a
significant impact on the type of weight matrix spectra. In a sense, complex features in a data
set will bring in complex correlations in weight matrix entries, thus generating heavy tails in their
spectrum.5

Table 6: Detection rates on test data from the trained NNs with their spectrum type in parenthesis.
The batch size is 16.

Data Set
NN

LeNet MiniAlexNet VGG11

MNIST 99% (BT/LT) 99% (BT/LT) 99% (LT)
CIFAR10 64% (HT) 76% (HT) 81% (HT)

4. A spectral criterion for early stopping

As a regularization technology in Deep Learning, early stopping is adopted to improve gener-
alization accuracy of a DNN. People may use testing data set to obtain convenient stopping time

5. Following recommendation from referee, we have selected a few weight matrices in experiments with synthetic
Gaussian data which display a HT spectrum and examined their spectrum after reshuffling randomly their entries.
We have always observed a LT spectrum after shuffling. This confirms that the HT type spectra found here originated
from high correlations between the entries of weight matrices, and not because they have high moments (high values).
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(a) 16 (b) 32 (c) 64 (d) 128 (e) 256

(f) 16 (g) 32 (h) 64 (i) 128 (j) 256

(k) 16 (l) 32 (m) 64 (n) 128 (o) 256

Figure 9: Training on MNIST: Weight matrix spectra at final epoch 248. LeNet: (a)-(e);
MiniAlexNet: (f)-(j); VGG : (k)-(o). Columns show experiments with different batch
sizes. All the figures are results trained on MNIST. The display of LT in the figures indi-
cates the low classification difficulty of the training on MNIST.
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(a) 16 (b) 32 (c) 64 (d) 128 (e) 256

(f) 16 (g) 32 (h) 64 (i) 128 (j) 256

(k) 16 (l) 32 (m) 64 (n) 128 (o) 256

Figure 10: Training on CIFAR10: Weight matrix spectra at final epoch 248. LeNet: (a)-(e);
MiniAlexNet: (f)-(j); VGG : (k)-(o). Columns show experiments with different batch
sizes. All the figures are results trained on CIFAR10. The display of HT in the figures
indicates the complex features in CIFAR10 and high classification difficulty of the train-
ing on CIFAR10.
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in practice, but when we model the data set, it is a trade off to separate data set into training and
testing. Sometimes as Martin et al. (2021) pointed out, it is more expensive to acquire the testing
data set. There are also situations where practioners of Deep Learning are laid to use pre-trained
and existing DNNs without access to test data.

So an important question we address here is: Without any testing data set, shall we early stop or
not? And how to define an early stopping time?

The spectra of weight matrices encode information during the training time and we aim at using
this information to guide an eventual early stopping of the training process. Specifically, we con-
struct a spectral criterion based on a distance between an ongoing weight matrix spectrum and the
reference MP Law. When this distance is judged large enough, we obtain evidence for the forma-
tion of a HT or BT type spectrum, thus the implicit regularization in the DNN suggests to stop the
training process. Note that this spectral criterion for early stopping does not need any test data.

One may ask why the appearance of a HT spectrum is a good early stopping time? To
answer the question, recall that Martin et al. (2021) mentioned that MP Law spectra could not
evaluate the performance of the trained model, but Heavy Tail spectra could. The Heavy Tail spectra
may correspond to better or worse test performance. From the information encoder perspective, we
argue that the emergence of Heavy Tail or Rank Collapse in weight matrices could be viewed in two
ways:

• Indication of the poor quality in the training data or the poor ability in the whole system: in
synthetic data experiments, the poor training data or system quality will lead to instability or
overfitting during the training process. So the emergence of Heavy Tail can be treated as an
alarm for these hidden and problematic issues in the network. Note that this fact of alarm has
been also remarked in Martin et al. (2021).

• Indication of a regularized structure that has acquired considerable information from the train-
ing data: an HT spectrum is far from the initial MP Laws which is induced by the random
weight initialization and its emergence can be viewed as an indication of a well-trained struc-
ture that has already captured sufficient information from the input data. Such structure will
somehow ensure the testing accuracy of the whole system, and additional training will not
bring much improvement.

We now describe this spectral criterion in more detail. Consider a n×N (n ≤ N ) weight matrix
W and let X1, X2, ..., Xn be the n non-zero eigenvalues of the square matrix WW T . (These are
also, by definition, the squares of the singular values of the matrix W . The initialization of W has
been rescaled with 1/

√
N .) We then construct a histogram estimator p̂M (x) for the joint density

of the eigenvalues using M bins. Next, let pc,σ2(x) be the reference Marčenko-Pastur density (Ap-
pendix A) depending on a scale parameter σ2 and a shape parameter 0 < c < 1, with a compact
support [a, b] (0 < a < b). In practice, the parameters c and σ2 in the reference MP density pc,σ2(x)
are also estimated by using X1, ..., Xn. This leads to an estimated MP density function pĉ,σ̂2(x).
The estimation of distance between the distribution of the n eigenvalues and the MP density is
defined as the L1 distance

ŝn =

∫ b

a
|p̂M (x)− pĉ,σ̂2(x)|dx. (4.1)

Under the null hypothesis that the eigenvalues {Xi} follow the MP law, we have a precise rate for
ŝn → 0, which leads to our spectral criterion.
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Spectral criterion. Set M = 2⌊n
1
3 ⌋ and consider a threshold value s∗ = C ∗

√
log n/n

1
3 with

C = 0.4. For each training epoch, calculate ŝn in equation (4.1) by the Algorithm in Appendix C.
The training is stopped if ŝn > s∗.
(To gain more robustness in this stopping procedure, in all the experiments, we will stop the training
at three consecutive epochs where ŝn > s∗ happen (instead of at the first such epoch).) 2

More details on the determination of the distance value ŝn and the threshold value s∗ are given
later in Section 4.1.

The spectra criterion is validated in both synthetic and real data experiments. Evidence for this
spectral criterion is developed in details with extensive experimental results in Sections 4.2 and
4.3. In synthetic data experiments, the spectral criterion provides an early stopping epoch where the
testing accuracy is much higher than the final testing accuracy, even when the training accuracy is
still increasing. In real data experiments, the spectral criterion could also offer high-quality stopping
time, ensuring testing accuracy and cutting off a large unnecessary training time.

Note that the idea of using evolution of weight matrices to monitor the training process of a
DNN has appeared earlier in the AI community with the online WeightWatcher package. This
open-source package allows the user to analyze various pre-trained DNN models, with or without
training/testing data. Particularly, it permits the user to estimate the power law exponent α for a
given weight matrix and determine in consequence whether the DNN of interest is under-trained
or over-trained (Martin and Mahoney, 2021a,b; Martin et al., 2021). Online discussions on this
GitHub repository also mentioned how to use WeightWatcher for early stopping. However to our
best knowledge, there was no clearly defined implementation of this idea in an academic report.
The spectral criterion developed in this paper help fill this gap.

On a different note, it comes to our attention that Yang et al. (2022) proposed a similar distance
measure called “randdistance metric” to distinguish between a HT type and MP Law. Among many
distance measures considering in the paper, the randdistance is the most recommended one which
“achieves the highest worst-case rank correlation with generalization performance under a variety
of training settings”.

4.1 Technical details of the spectral criterion

Consider n data points X1, X2, ..., Xn, supported on an interval [a, b], with 0 < a < b. Consider
a mesh net on the interval on M bins of binsize (b− a)/M ,

Bj =

(
a+ (j − 1)

b− a

M
, a+ j

b− a

M

]
, 1 ≤ j ≤M.

For a real x, let B(x) be the bin Bj that contains x (if no such bin exists, B(x) = ∅). The histogram
estimator for the density function of the data is

p̂M (x) =
M

n(b− a)

n∑
i=1

I(Xi ∈ B(x)), x ∈ R.

With reference to Random Matrix Theory Results given in Appendix A, the density function of the
MP Law MPc,σ2 is

pc,σ2(x) = MPc,σ2(x) =
1

2πcσ2x

√
(b− x)(x− a)I(a ≤ x ≤ b), (4.2)
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with a = σ2(1 −
√
c)2 and b = σ2(1 +

√
c)2. We thus use the following L1 distance between the

two density functions to measure the departure of the data points {Xi} from the MP law:

sn =

∫ b

a
|p̂M (x)− pc,σ2(x)|dx. (4.3)

Under the null hypothesis that the data points follow the MP-law, we have the following convergence
rate of sn to zero.

Proposition 4.1. Suppose {Xi}ni=1 are generated independently from pc,σ2(x) = MPc,σ2 , then the
distance in (4.3) satisfies

sn = Op

(
1

M
+

√
M log n

n

)
.

(Here Op denotes the boundedness in probability.)

The proof is given in Appendix B.1. Due to the fact that MP density pc,σ2(x) has unbounded
derivatives at its edge points {a, b}, the proof is obtained via a special adaptation of the existing rate
for histogram estimator from the literature.

In practice, we do not know the parameters c and σ2 of the reference MP density pc,σ2(x). Then
we use the observed extreme statistics â = X(1), and b̂ = X(n) to estimate a and b, respectively.
These lead to corresponding estimates ĉ and σ̂2 for the parameters c and σ2, respectively. The MP
density function with estimated parameters is then pĉ,σ̂2(x), and the L1 distance between the data
set {X1, . . . , Xn} and the MP law is estimated by

ŝn =

∫ b

a
|p̂M (x)− pĉ,σ̂2(x)|dx. (4.4)

The following proposition guarantees a convergence rate for the estimator ŝn,

Proposition 4.2. For the estimated distance ŝn in (4.4), we have

ŝn = Op

(
1

n1/3
+

1

M
+

√
M log n

n

)
. (4.5)

The proof of the proposition is given in Appendix B.2. The proposition is next used to define
a rejection region for the null hypothesis. Consider M = O(n

1
3 ). From (4.5), under the null

hypothesis, ŝn will converge to zero at the optimal rate of OP (
√
log n/n

1
3 ). In contrast, under a

deviation of ESDs in weight matrices such as emergence of heavy tails, ŝn will no longer tend to 0.
Therefore, it is possible to define a critical value of the form s∗ = C

√
log n/n1/3 for some constant

C for the test statistics ŝn. The calibration of the constant C is as follows.

Calibration of the critical constant C. We calibrate the constant C by simulations under the null
hypothesis. For different MP Laws, we generate eigenvalues and get histograms of ŝnn

1
3 /
√
log n.

As shown in Figure 11, most of the time ŝnn
1
3 /
√
log n lies in the interval [0.15,0.25] with its largest

values around 0.35. We thus recommend the critical constant C = 0.4. One may naturally select a
slightly different critical constant: we have tested several choices of the constant from C = 0.4 to
C = 0.6 in our experiments and the obtained results are very similar and all satisfactory. Basically,
any value of C in the range of [0.4, 0.6] can be recommended for the spectral criterion. 2
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Figure 11: Histograms of ŝnn
1
3 /
√
log n from different c and n under the null hypothesis: for each

pair of (c, n), the eigenvalues are generated from standard MP Law with 50 repetitions
that lead to 50 values of the statistic.

24



IMPACT OF CLASSIFICATION DIFFICULTY ON THE WEIGHT MATRICES SPECTRA IN DEEP LEARNING

4.2 Early stopping in synthetic data experiments

Because of huge amount of data under analysis, we conduct experiments, stock the relevant data,
and then check the results offline. The epochs where we save trained NNs for different architectures
are all fixed at 0, 1, 2,..., 9, 10, 12, 16, 20,..., 248, the latter epochs having an increment of four.
Even in such sparse data reservation, the total data we obtained is larger than 1TB.

We apply the spectra criterion to the stocked training epochs, and decide early stopping if the
criterion is met. When this happens, we compare the test accuracy of the stopped NN with that of
the NN trained till the final epoch (248th). This comparison serves to measure the quality of the
early stopping using the spectral criterion. Experiment results with K = 8 are shown in Table 7 and
Figure 12.

A summary of findings is as follows.

1. NN1+D1 and NN1+D2: During the first 20 epochs when the SNR is low, the testing accuracy
is decreasing while the training accuracy is increasing. The spectral criterion detects such
hidden and problematic issues and recommends early stopping. It is truly remarkable that
almost all early stopped NNs have higher test accuracies than the corresponding NNs trained
till the end. The advantage is particularly important when the SNR is low. When the SNR
is high, there might be no alarm by the spectral criterion, see the situation of TP=0.9 in
NN1+D1 and TP=4.8 in NN1+D2 (TP is the tuning parameter reflecting the SNR). This is in
fact a consistency of the spectral criterion, no early stopping is needed, and the fully trained
NNs have indeed higher test accuracies.

2. NN2+D1 and NN2+D2: the spectral criterion detects stopping time under low SNR, nonethe-
less the testing accuracy is a little lower than the final testing accuracy. As the differences are
very small, huge training time is cut off, and testing accuracy is ensured due to the emergence
of well-trained structure that already seized sufficient information.

The spectral criterion is also valid when overfitting appears in training. In such situation, the
training and testing accuracy do not have the same tendency. As training epochs increase, Figure
12 shows that the training accuracy tends to 100% while the testing accuracy is highly related with
the tuning parameter δ or t. Without testing data, the spectral criterion is able to propose an early
stopping time even when the training accuracy is still increasing but the testing accuracy becomes
to decline.

When the spectral criterion alarms at different epochs in different layers, there is a question
that how to decide a stopping time for the training process? From our experimental results, we
empirically suggest that any epoch after the time some layer hits the critical value s∗ is suitable
to stop, and it is strongly recommended to stop training if there is more than one layer hitting the
critical value. For example, TP=0.15 in NN1+D1, epochs in 7-10 are all suitable early stopping
times with a guaranteed test accuracy.

25



MENG AND YAO

Table 7: Early stopping results in synthetic data experiments with C = 0.4: stopping epochs
selected by spectral criterion in different layers’ weight matrices and their testing accu-
racy (Test Acc). The symbol ”-” means no early stopping epoch is found by the spectral
criterion.

The combination NN1+D1

Typical
TP

spectral criterion C = 0.4 Final Epoch 248
epoch(FC2) Test Acc epoch(FC3) Test Acc FC1 FC2 Test Acc

0.15 7 25.84% 10 23.23% HT HT 20.17%
0.2 7 32.70% 12 27.48% HT HT 27.03%
0.3 7 49.36% 12 45.48% HT HT 44.80%
0.6 8 88.52% 32 88.32% BT BT 88.30%
0.9 - - LT LT 99.13%

The combination NN1+D2

Typical
TP

spectral criterion C = 0.4 Final Epoch 248
epoch(FC2) Test Acc epoch(FC3) Test Acc FC1 FC2 Test Acc

0.24 9 14.69% 16 13.89% HT HT 13.08%
1.2 7 38.61% 12 35.84% HT HT 32.98%
2.4 7 77.19% 16 74.55% BT BT 75.92%
3.2 9 92.11% - BT LT 92.64%
4.8 - - LT LT 99.73%

The combination NN2+D1

Typical
TP

spectral criterion C = 0.4 Final Epoch 248
epoch(FC1) Test Acc epoch(FC2) Test Acc FC1 FC2 Test Acc

0.02 6 14.89% 7 15.84% HT BT 16.02%
0.04 8 24.78% 7 23.34% HT BT 25.38%
0.07 5 48.31% 6 48.63% BT BT 50.12%
0.13 6 87.03% - BT LT 87.50%
0.2 - - LT LT 99.14%

The combination NN2+D2

Typical
TP

spectral criterion C = 0.4 Final Epoch 248
epoch(FC1) Test Acc epoch(FC2) Test Acc FC1 FC2 Test Acc

0.24 10 13.08% 6 12.89% HT BT 13.44%
1.2 12 34.22% 5 34.63% BT BT 36.31%
2.4 5 72.59% 16 74.61% BT BT 75.12%
3.2 - - LT LT 91.20%
4.8 - - LT LT 99.59%
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(a) NN1D1 (b) NN1D2 (c) NN2D1 (d) NN2D2

(e) NN1D1 (f) NN1D2 (g) NN2D1 (h) NN2D2

Figure 12: Testing and Training Accuracy: We begin the line at epoch=1. Testing accuracy:
(a)-(d); Training accuracy: (e)-(h). y-axis is the accuracy value, x-axis is the training
epochs. Different line represents different SNRs in data sets.

4.3 Early stopping in real data experiments

In real data experiments, we still follow the settings in Section 4.2 to evaluate the quality of
early stopping time using the spectral criterion by checking LeNet/MiniAlexNet+MNIST/CIFAR10.
Experiment results are shown in Table 8.

A summary of findings is as follows.

1. LeNet+MNIST and LeNet+CIFAR10: Testing accuracy and training accuracy are both in-
creasing during the training process. The FC2 layer in LeNet hits the critical value s∗ first,
and provides a possible early stopping time. For MNIST, the test accuracy in the early stopped
epoch only has the negligible difference 0.1% with the final test accuracy; For CIFAR10, the
test accuracy is lower but still guaranteed compared with the final test accuracy. We check the
FC1 layer for CIFAR10, find that the “strongly suggested” stopping epochs in batch sizes 16
and 32 have much higher test accuracies, and in larger batch sizes, we could stop for saving
time or keep training for a higher test accuracy.

2. MiniAlexNet+MNIST and MiniAlexNet+CIFAR10: The FC1 layer always hits the critical
value first. For MNIST, the test accuracy still has negligible difference with the final test
accuracy in small batch sizes 16 and 32, and no early stopping epoch is found by the spectral
criterion with larger batch sizes. For CIFAR10, it is the most representative experiment be-
cause the training explosion happens in batch sizes 16 and 32. We check whether the spectral
criterion gives alarm and performs well. The answer is yes. The spectral criterion strongly
suggested to stop before training explosion and has a quite high test accuracy. In larger batch
sizes, the test accuracy is are also ensured while cutting a large amount of training time.

We also have conducted experiments with another choice of the critical constant of C = 0.6 on
both synthetic and real data to check the robustness of the spectral criterion. Details are shown in
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Appendix D, Tables 9 and 10. The new results are very similar to those obtained with C = 0.4. In
practice, we recommend the use of the spectral criterion with a critical constant C in the range of
[0.4,0.6].

Table 8: Early stopping results in real data experiments with C = 0.4: stopping epochs selected
by spectral criterion in different layers’ weight matrices and their testing accuracy (Test
Acc). The symbol ”-” means no early stopping epoch is found by the spectral criterion.

The combination LeNet+MNIST

batchsize
spectral criterion C = 0.4 Final Epoch 248

epoch(FC1) Test Acc epoch(FC2) Test Acc FC1 FC2 Test Acc
16 - 16 99.08% LT BT 99.17%
32 - 40 99.13% LT BT 99.17%
64 - 68 98.98% LT BT 98.98%

128 - 124 98.91% LT BT 99.03%
256 - - LT LT 98.96%

The combination LeNet+CIFAR10

batchsize
spectral criterion C = 0.4 Final Epoch 248

epoch(FC1) Test Acc epoch(FC2) Test Acc FC1 FC2 Test Acc
16 24 61.37% 8 61.62% BT HT 64.99%
32 60 64.78% 10 57.94% BT HT 64.57%
64 - 28 59.19% LT BT 62.49%

128 - 60 61.38% LT BT 61.83%
256 - 84 54.23% LT BT 60.49%

The combination MiniAlexNet+MNIST

batchsize
spectral criterion C = 0.4 Final Epoch 248

epoch(FC1) Test Acc epoch(FC2) Test Acc FC1 FC2 Test Acc
16 4 99.23% - BT LT 99.49%
32 20 99.42% - BT LT 99.41%
64 - - LT LT 99.42%

128 - - LT LT 99.39%
256 - - LT LT 99.31%

The combination MiniAlexNet+CIFAR10

batchsize
spectral criterion C = 0.4 Final Epoch 248

epoch(FC1) Test Acc epoch(FC2) Test Acc FC1 FC2 Test Acc
16 3 69.05% 9 72.02% HT RC 10%(explode)
32 4 72.17% 16 74.64% HT RC 10%(explode)
64 5 71.61% 28 76.35% BT BT 77.94%
128 10 74.14% - BT LT 77.43%
256 24 75.70% - BT LT 75.93%
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(a) LeMNIST (b) LeCIFAR (c) AlexMNIST (d) AlexCIFAR

(e) LeMNIST (f) LeCIFAR (g) AlexMNIST (h) AlexCIFAR

Figure 13: Testing and Training Accuracy: We begin the line at epoch=1. Testing accuracy:
(a)-(d); Training accuracy: (e)-(h). y-axis is the accuracy value, x-axis is the training
epochs. Different line represents different batch sizes. (The notation “LeMNIST” means
“LeNet+MNIST”, same to “LeCIFAR”, “AlexMNIST” and “AlexCIFAR”).

5. Conclusion

The degree of difficulty of a classification problem has a great impact on the spectra of weight
matrices. We study the phenomenon from three aspects: the SNR, the number of classes and the
complexity of data features. We find that more difficult the classification is, the higher probability
the heavy tails will emerge with. Further, in line with Martin and Mahoney (2021b), heavy tails
could be regarded as a training information encoder and indicate some implicit regularization in
NNs. Such implicit regularization in the weight matrices provides a new way of understanding the
whole training process. Based on these findings, we derive a spectral criterion for early stopping.
The procedure is capable of avoiding over-training when the data is of poor quality, and cutting
off large training time when the classification problem is complex. From the encoded information,
the spectral criterion can even provide an early stopped time when the training accuracy is still
increasing.

Our study confirms that spectral analysis of weight matrices provides a new way for the under-
standing of Deep Learning. It also points to several unanswered questions to explore in the future.
It seems particularly interesting to understand the reasons behind some of our empirical findings
such as how SGD generates heavy tails with datasets from a difficult classification problem (even
though the data may be of impeccable quality) but sticks to light tails with datasets from an easy or
moderately difficult classification problem in deep neural networks.

29



Acknowledgements

The authors are particularly grateful to the numerous valuable comments received from the
Editor and three referees. The final paper has much departed from its initial version, especially due
to the revisions required by these very helpful comments.

References

Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization, 2014.

Jungang Ge, Ying-Chang Liang, Zhidong Bai, and Guangming Pan. Large-dimensional random
matrix theory and its applications in deep learning and wireless communications, 2021.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training im-
agenet in 1 hour. CoRR, abs/1706.02677, 2017. URL http://arxiv.org/abs/1706.
02677.

Diego Granziol. Beyond random matrix theory for deep networks, 2020.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Jaehoon Lee, Jascha Sohl-dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz, and
Yasaman Bahri. Deep neural networks as gaussian processes. In International Confer-
ence on Learning Representations, 2018. URL https://openreview.net/forum?id=
B1EA-M-0Z.

30

http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1609.04836
https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=B1EA-M-0Z


Charles H. Martin and Michael W. Mahoney. Post-mortem on a deep learning contest: a simp-
son’s paradox and the complementary roles of scale metrics versus shape metrics. CoRR,
abs/2106.00734, 2021a. URL https://arxiv.org/abs/2106.00734.

Charles H. Martin and Michael W. Mahoney. Implicit self-regularization in deep neural networks:
Evidence from random matrix theory and implications for learning. Journal of Machine Learning
Research, 22(165):1–73, 2021b. URL http://jmlr.org/papers/v22/20-410.html.

Charles H Martin, Tongsu Serena Peng, and Michael W Mahoney. Predicting trends in the quality
of state-of-the-art neural networks without access to training or testing data. Nature Communi-
cations, 12(1):1–13, 2021.

Vardan Papyan. Measurements of three-level hierarchical structure in the outliers in the spectrum of
deepnet hessians. CoRR, abs/1901.08244, 2019a. URL http://arxiv.org/abs/1901.
08244.

Vardan Papyan. The full spectrum of deepnet hessians at scale: Dynamics with sgd training and
sample size, 2019b.

Vardan Papyan. Traces of class/cross-class structure pervade deep learning spectra, 2020.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020.

Jeffrey Pennington and Pratik Worah. Nonlinear random matrix theory for deep learning. Journal
of Statistical Mechanics: Theory and Experiment, 2019(12):124005, dec 2019. doi: 10.1088/
1742-5468/ab3bc3. URL https://doi.org/10.1088/1742-5468/ab3bc3.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singu-
larity and beyond, 2017.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. Computer Science, 2014.

Yaoqing Yang, Ryan Theisen, Liam Hodgkinson, Joseph E. Gonzalez, Kannan Ramchandran,
Charles H. Martin, and Michael W. Mahoney. Evaluating natural language processing mod-
els with generalization metrics that do not need access to any training or testing data. CoRR,
abs/2202.02842, 2022. URL https://arxiv.org/abs/2202.02842.

Jianfeng Yao, Shurong Zheng, and ZD Bai. Sample covariance matrices and high-dimensional data
analysis. Cambridge University Press Cambridge, 2015.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W. Mahoney. Pyhessian: Neural networks
through the lens of the hessian. In 2020 IEEE International Conference on Big Data (Big Data),
pages 581–590, 2020. doi: 10.1109/BigData50022.2020.9378171.

31

https://arxiv.org/abs/2106.00734
http://jmlr.org/papers/v22/20-410.html
http://arxiv.org/abs/1901.08244
http://arxiv.org/abs/1901.08244
https://doi.org/10.1088/1742-5468/ab3bc3
https://arxiv.org/abs/2202.02842


Supplementary materials to ‘Impact of classification
difficulty on the weight matrices spectra in Deep

Learning and application to early-stopping’
Xuran Meng, Jianfeng Yao∗

Department of Statistics and Actuarial Science, The University of Hong Kong,
Hong Kong SAR, China

and
School of Data Science, The Chinese University of Hong Kong (Shenzhen), China

* To whom correspondence should be addressed: jeffyao@cuhk.edu.cn

A. Useful results from random matrix theory

In this section, we review two results from random matrix theory (RMT) which are useful for our
analysis. More complete information can be found in the literature, for example in the monograph
Yao et al. (2015). As a model for the weight matrices in a DNN, consider an n × p random matrix
W = (wij) where the entries {wij} are i.i.d. complex random variables with mean zero and
variance σ2. Both dimensions p and n = n(p) grow to infinity in such a way that n/p→ c ∈ (0,∞).
The corresponding sample covariance matrix is Sp =

1
pWW ∗ and let λSp

1 ≥ · · · ≥ λ
Sp
n be its sorted

eigenvalues. The ESD of Sp is

FSp(x)
∆
=

1

n

n∑
j=1

I(λj ≤ x), x ∈ R,

where I(·) is the indicator function.

Theorem A.1 (Marchenko-Pastur law). Under the setting above, almost surely when p → ∞, the
ESD FSp converges to the Marchenko-Pastur law Fc,σ2 with parameter (c, σ2) defined as follows:
it has the density function

pc,σ2(x) =
1

2πxcσ2

√
(b− x)(x− a) I(a < x < b), x ∈ R, (A.1)

and if c > 1, an additional point mass of value 1 − 1/c at the origin. Here a = σ2(1 −
√
c)2 and

b = σ2(1 +
√
c)2.

Theorem A.2 (Tracy-Widom Law). With the setting above and assume moreover that Ew4
11 <∞.

Define

µpn =
1

p

{
(p− 1)

1
2 + n

1
2

}2

and

σpn =
1

p

{
(p− 1)

1
2 + n

1
2

}{
(p− 1)−

1
2 + n− 1

2

} 1
3
.

Then as p→∞,
λ1

a.s.−→ (1 +
√
c)2,
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and
λ1 − µpn

σpn

d−→ F1,

where F1 is the Tracy-Widom Law of order 1 whose distribution function is given by

F1(s) = exp

{∫ +∞

s
q(x) + (x− s)2q2(x)dx

}
, s ∈ R,

where q solves the Painlevé II differential equation

q′′(x) = xq(x) + 2q3(x).

with boundary condition
q(s) ∼ Ai(s), s→ +∞.

Here Ai(s) is the airy function.

B. Technical Proofs

In the following proofs, C denotes a generic constant that may change value from time to time.

B.1 Proof of Proposition 4.1

Let h = hM = (b− a)/M be the bin-size. By definition, p̂M (x) = 1
nh

n∑
i=1

I (Xi ∈ B (x)),

sn =

∫ b

a
|p̂M (x)− p (x)| dx

≤
∫ b

a
|Ep̂M (x)− p (x)| dx+

∫ b

a
|p̂M (x)− Ep̂M (x)| dx. (B.1)

First term in (B.1): There exists x∗ ∈ B1 such that

P (Xi ∈ B1) = C

∫ a+h

a

√
(b− x) (x− a)

x
dx = Ch

√
(b− x∗) (x∗ − a)

x∗
≤ C ∗ 1

M
∗
√

1

M
.

Thus

P (Xi ∈ B1) = O

(
1

M
3
2

)
,

Similarly we also have P (Xi ∈ BM ) = O
(

1

M
3
2

)
. Then∫

B1∪BM

|Ep̂M (x)− p (x)| dx

≤
∫
B1∪BM

{Ep̂M (x) + p (x)} dx

=

∫
B1∪BM

1

h
P (Xi ∈ B1 ∪BM ) dx+ P (Xi ∈ B1 ∪BM )

= O

(
1

M
3
2

)
. (B.2)
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Consider a middle bin Bl with l ∈ {2, 3, ...,M −1}. There exists x∗l ∈ Bl such that for any x ∈ Bl,
we have

Ep̂M (x) =
1

h
P (Xi ∈ B (x)) =

1

h

∫ a+(l+1)h

a+lh
p(u)du = p (x∗l ) .

We can further find an x∗∗l between x and x∗l , such that

|Ep̂M (x)− p (x)| = |p (x∗l )− p (x)| =
∣∣p′ (x∗∗l ) (x∗l − x)

∣∣
≤ C ∗

|x∗∗l − (x∗∗l − a) (b− x∗∗l )|√(
x∗∗l − a

) (
b− x∗∗l

) (
x∗∗l
)2 ∗ |x∗l − x| ≤ C√

lM
.

Then ∫
∪M−1
l=1 Bl

|Ep̂M (x)− p (x)| dx =
M−1∑
l=2

∫
Bl

|Ep̂M (x)− p (x)| dx

≤
M−1∑
l=2

∫
Bl

1√
l
· C√

M
dx =

M−1∑
l=2

1√
l
· C√

M
· 1

M
= O

(
1

M

)
.

Combining with (B.2), we have∫ b

a
|Ep̂M (x)− p (x)| dx = O

(
1

M

)
. (B.3)

Second term in (B.1): We have

P

(
sup
x
|p̂M (x)− Ep̂M (x)| > ε

)
= P

(
M · max

l=1,...,M

1
n

∣∣∣∣ n∑
i=1

I (Xi ∈ Bl)− nP (Xi ∈ Bl)

∣∣∣∣ > ε

)
= P

(
max

l=1,...,M

1
n

∣∣∣∣ n∑
i=1

I (Xi ∈ Bl)− nP (Xi ∈ Bl)

∣∣∣∣ > ε
M

)
≤

M∑
l=1

P

(
1
n

∣∣∣∣ n∑
i=1

I (Xi ∈ Bl)− nP (Xi ∈ Bl)

∣∣∣∣ > ε
M

)
.

Note that P (Xi ∈ Bl) = O (1/M), by Bernstein inequality,

M∑
l=1

P

(
1

n

∣∣∣∣∣
n∑

i=1

I (Xi ∈ Bl)− nP (Xi ∈ Bl)

∣∣∣∣∣ > ε

M

)
≤

M∑
l=1

e−C n2ε2

M2 { n
M

+ nε
3M

}−1

≤Me−C nε
M .

Let ε =
√

M logn
n , we obtain

sup
x∈[a,b]

|p̂M (x)− Ep̂M (x)| = Op

(√
M log n

n

)
.
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This implies that for any ε0 > 0, there exists R > 0, such that

P

(√
n

M log n
sup

x∈[a,b]
|p̂M (x)− Ep̂M (x) | > R

)
< ε0.

On the other hand, for
∫ b
a |p̂M (x)− Ep̂M (x)| dx, there exists xn satisfying

|p̂M (xn)− Ep̂M (xn)| (b− a) ≥
∫ b

a
|p̂M (x)− Ep̂M (x)| dx.

Combining these two estimates, we obtain

ε0 > P

(√
n

M log n
sup

x∈[a,b]
|p̂M (x)− Ep̂M (x) | > R

)

≥ P

(√
n

M log n
|p̂M (xn)− Ep̂M (xn) | (b− a) > R (b− a)

)
≥ P

(√
n

M log n

∫ b

a
|p̂M (x)− Ep̂M (x)| dx > R (b− a)

)
.

This is equivalent to the property:∫ b

a
|p̂M (x)− Ep̂M (x)| dx = Op

(√
M log n

n

)
.

Combining the estimates for the two terms in (B.1) completes the proof.

B.2 Proof of proposition 4.2

Recall the order statistics X(1) ≤ · · · ≤ X(n) of the sample. For ε > 0, there exists R > 0 such
that

P
(
n

2
3
(
X(1) − a

)
> R

)
=

n∏
i=1

P
(
Xi − a > R/n

2
3

)
=

(
1−

∫ a+ R

n
2
3

a
p (x) dx

)n

∼

(
1− C

∫ a+ R

n
2
3

a

√
x− adx

)n

=
(
1− CR

3
2 /n

)n
< ε,

for large enough n. Then X(1) − a = Op

(
n− 2

3

)
. Similarly, b−X(n) = Op

(
n− 2

3

)
. (The rate here

is the same as in the Tracy-Widom Law).
With p(x) = pc,σ2(x) and p̂(x) = pĉ,σ̂2(x), we have by definition,

ŝn =

∫ b

a
|p̂M (x)− p̂(x)|dx =

∫ b

a
|p̂M (x)− p(x) + {p(x)− p̂(x)})|dx ≤ sn +

∫ b

a
|p̂ (x)− p (x) |dx.
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Since the estimate for sn is given in Proposition 4.1, we only need to estimate the last integral.
Let C0 = 2πσ2c, Ĉ0 =

1
2π
(√

X(n) −
√
X(1)

)2, we have

∫ b

a
|p̂ (x)− p (x)| dx =

∫ b

a

∣∣∣∣∣∣
√

(b− x) (x− a)

C0x
−

√(
X(n) − x

) (
x−X(1)

)
Ĉ0x

I
([
X(1), X(n)

])∣∣∣∣∣∣ dx
≤
∫ b

a

∣∣∣∣ 1Ĉ0

∣∣∣∣ ·
∣∣∣∣∣∣
√
(b− x) (x− a)

x
−

√(
X(n) − x

) (
x−X(1)

)
x

I
([
X(1), X(n)

])∣∣∣∣∣∣ dx+

∣∣∣∣ 1C0
− 1

Ĉ0

∣∣∣∣
∆
= P1 + P2.

Note that Ĉ0
p−→ C0 > 0, by continuous mapping, 1

Ĉ0

p−→ 1
C0

> 0, thus 1
Ĉ0

= Op (1). Then we
have

P2 =

∣∣∣∣ 1C0
− 1

Ĉ0

∣∣∣∣ = π

((√
b−
√
a
)2
−
(√

X(n) −
√

X(1)

)2)
2C0Ĉ0

≤ Op (1) ·Op

(√
b−

√
X(n) +

√
X(1) −

√
a
)
= Op

(
n− 1

3

)
.

For P1, we have

P1 = Op(1)

∫ b

a

∣∣∣∣√(b− x) (x− a)−
√(

X(n) − x
) (

x−X(1)

)
I
([
X(1), X(n)

])∣∣∣∣ dx
Because n2/3(X(1) − a) = Op(1) and n2/3(X(n) − b) = Op(1), by continuous mapping, we have
n2/3P1 = Op(1). Finally∫ b

a
|p̂ (x)− p (x) |dx ≤ P1 + P2 = Op

(
n− 1

3

)
,

and the proof of the proposition is complete.

C. Algorithms

In this section, we detail algorithms for detection of spikes and estimate deviations from the MP
Law.

Algorithm 1 below gives an automatic method of detecting spikes using a tuning parameter α.
When the gap between spikes and bulk is larger than α times the average difference level, the gap
will be detected by the algorithm. HS and TS represent the number of spikes larger or smaller than
the value of bulk, respectively. The method is based on the principle that the gap between the spikes
and the bulk is much larger than the average differences between subsequent eigenvalues.

After detecting the spikes with Algorithm 1, the deviation measurement between ESDs in weight
matrices and standard MP Law is given by Algorithm 2 below. As described in Section 2.2.1, this
algorithm is also used to distinguish the spectrum types BT and LT. Finally, Algorithm 2 calculates
the spectral criterion value ŝn introduced Section 4.
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Algorithm 1 Auto-detection of spikes

Require: Eigenvalues {λi}Ni=1, α← 7.
Sort λi with descending order, λi > λi+1

for i = 1; i < N ; i++ do
βi ← λi − λi+1

end for
β =

∑N−1
i=1 βi/(N − 1)

r ← α · β
for i = 1; i < N/2; i++ do

if βi > r then
HS← i

end if
end for
for i = N − 1; i > N/2; i−− do

if βi > r then
TS← N − i

end if
end for
return HS,TS

Algorithm 2 Get deviation measurement ŝn
Require: Eigenvalues {λi}Ni=1, α← 7.

Sort λi with descending order, λi > λi+1

HS,TS← Algorithm 1({λi}Ni=1, α)
n← N−HS−TS
for i = 1; i ≤ n; i++ do

γi ← λi+HS ▷ Get eigenvalues lying in the bulk
end for
M ← 2⌊n 1

3 ⌋ ▷ The number of Bins
H ← ⌊n/M⌋
f(x)← 2

√
(γ1−x)(x−γn)

π(
√
γ1−

√
γn)2x

ŝn = 0
for i = 1; i < M ; i++ do

a, b← (i− 1)H + 1, iH + 1
L← (b− a)/n/(γa − γb)
s←

∫ γa

γb
|f(x)− L|dx

ŝn ← ŝn + s
end for
a, b← (M − 1)H + 1, n
L← (b− a)/n/(γa − γb)
s←

∫ γa

γb
|f(x)− L|dx

ŝn ← ŝn + s
return ŝn
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D. Results for the spectral criterion with C = 0.6

In this section, we report additional experimental results of the spectral criterion with critical
constant C = 0.6 (results in the main text all use the value of C = 0.4). A higher value of C makes
the criterion more conservative and the additional results with C = 0.6 help check the robustness
of the spectral criterion.

A higher value of C thus implies a longer time of training. Detailed results are reported in
Tables 9 and 10, for the experiments on the synthetic Gaussian data and the real data sets MNIST
and CIFAR10, respectively. They parallel the results reported in Tables 7 and 8 of the paper using
C = 0.4. To a very large extent, the new results confirm our conclusions in the previous tables.
Again the spectral criterion detects the problematic issues in the numeric experiments and suggests
early stopping even when the training accuracy is increasing. In the real data experiments, the
spectral criterion predicts the training explosion quite accurately. Combined all the results with
C = 0.4 and C = 0.6, we recommend the use of the spectral criterion with a critical constant C in
the range of [0.4,0.6].
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Table 9: Early stopping results in numeric experiments with C = 0.6: stopping epochs selected
by spectral criterion in different layers’ weight matrices and their testing accuracy (Test
Acc). The symbol ”-” means no early stopping epoch is found by the spectral criterion.

The combination NN1+D1

Typical
TP

spectral criterion C = 0.6 Final Epoch 248
epoch(FC2) Test Acc epoch(FC3) Test Acc FC1 FC2 Test Acc

0.15 8 24.58% 16 20.44% HT HT 20.17%
0.2 8 31.50% 16 25.83% HT HT 27.03%
0.3 8 49.09% 12 45.48% HT HT 44.80%
0.6 9 87.96% - BT BT 88.30%
0.9 - - LT LT 99.13%

The combination NN1+D2

Typical
TP

spectral criterion C = 0.6 Final Epoch 248
epoch(FC2) Test Acc epoch(FC3) Test Acc FC1 FC2 Test Acc

0.24 9 14.69% - HT HT 13.08%
1.2 8 39.31% 16 32.11% HT HT 32.98%
2.4 8 76.75% 20 74.29% HT HT 75.92%
3.2 10 91.94% - HT LT 92.64%
4.8 - - LT LT 99.73%

The combination NN2+D1

Typical
TP

spectral criterion C = 0.6 Final Epoch 248
epoch(FC1) Test Acc epoch(FC2) Test Acc FC1 FC2 Test Acc

0.02 - - HT BT 16.02%
0.04 - - HT BT 25.38%
0.07 - - HT BT 50.12%
0.13 - - BT LT 87.50%
0.2 - - LT LT 99.14%

The combination NN2+D2

Typical
TP

spectral criterion C = 0.6 Final Epoch 248
epoch(FC1) Test Acc epoch(FC2) Test Acc FC1 FC2 Test Acc

0.24 12 13.48% 7 13.19% HT HT 13.44%
1.2 24 35.80% 5 34.63% HT HT 36.31%
2.4 6 73.80% 36 74.86% BT BT 75.12%
3.2 - - LT LT 91.20%
4.8 - - LT LT 99.59%
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Table 10: Early stopping results in real data experiments with C = 0.6.
The combination LeNet+MNIST

batchsize
spectral criterion C = 0.6 Final Epoch 248

epoch(FC1) Test Acc epoch(FC2) Test Acc FC1 FC2 Test Acc
16 - 32 99.19% LT BT 99.17%
32 - - LT BT 99.17%
64 - - LT BT 98.98%

128 - - LT BT 99.03%
256 - - LT LT 98.96%

The combination LeNet+CIFAR10

batchsize
spectral criterion C = 0.6 Final Epoch 248

epoch(FC1) Test Acc epoch(FC2) Test Acc FC1 FC2 Test Acc
16 28 61.66% 8 61.62% BT HT 64.99%
32 - 20 61.06% BT HT 64.57%
64 - 32 60.27% LT BT 62.49%

128 - 60 61.38% LT BT 61.83%
256 - 92 58.33% LT BT 60.49%

The combination MiniAlexNet+MNIST

batchsize
spectral criterion C = 0.6 Final Epoch 248

epoch(FC1) Test Acc epoch(FC2) Test Acc FC1 FC2 Test Acc
16 5 98.64% - BT LT 99.49%
32 - - BT LT 99.41%
64 - - LT LT 99.42%

128 - - LT LT 99.39%
256 - - LT LT 99.31%

The combination MiniAlexNet+CIFAR10

batchsize
spectral criterion C = 0.6 Final Epoch 248

epoch(FC1) Test Acc epoch(FC2) Test Acc FC1 FC2 Test Acc
16 4 71.01% 36(RC) 55.6% HT RC 10%(explode)
32 4 72.17% 196(RC) 62.84% HT RC 10%(explode)
64 6 73.03% - BT BT 77.94%
128 12 74.31% - BT LT 77.43%
256 28 75.87% - BT LT 75.93%

40


	Introduction
	Experiments with Gaussian Data
	Gaussian Data Sets
	Structure of neural networks
	Optimization Methodology

	Results on synthetic data experiments
	Three types of spectrum bulk
	Phase Transition
	Additional experiments on different batch sizes


	Experiments with Real Data
	Experimental Design
	Results

	A spectral criterion for early stopping
	Technical details of the spectral criterion
	Early stopping in synthetic data experiments
	Early stopping in real data experiments

	Conclusion
	Useful results from random matrix theory
	Technical Proofs
	Proof of Proposition 4.1
	Proof of proposition 4.2

	Algorithms
	Results for the spectral criterion with C=0.6

